Uczenie maszynowe w Pythonie:

receptury

Tytuł oryginalny:
Machine learning with Python cookbook
practical solutions from preprocessing to deep learning
Autor:
Chris Albon
Tłumacz:
Robert Górczyński
Wydawcy:
Wydawnictwo Helion (2019)
NASBI (2019)
ebookpoint BIBLIO (2019)
Wydane w seriach:
Informatyka w Najlepszym Wydaniu
ISBN:
978-83-283-5046-5, 978-83-283-5051-9
Autotagi:
dokumenty elektroniczne
druk
e-booki

Uczenie maszynowe jest dziś wykorzystywane w różnych dziedzinach życia: w biznesie, w polityce, w organizacjach non profit i oczywiście w nauce. Samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania danych w wiedzę. Powstało sporo książek wyjaśniających sposób działania tych algorytmów i prezentujących nieraz spektakularne przykłady ich wykorzystania. Do dyspozycji pozostają też narzędzia przeznaczone do tego rodzaju zastosowań, takie jak biblioteki Pythona, w tym pandas i scikit-learn. Problemem pozostaje implementacja rozwiązań codziennych problemów związanych z uczeniem maszynowym.

Z tej książki najwięcej skorzystają profesjonaliści, którzy znają podstawowe koncepcje związane z uczeniem maszynowym. Osoby te potraktują ją jako przewodnik ułatwiający rozwiązywanie konkretnych problemów napotykanych podczas codziennej pracy z uczeniem maszynowym. Dzięki zawartym tu recepturom takie zadania jak wczytywanie danych, obsługa danych tekstowych i liczbowych, wybór modelu czy redukcja wymiarowości staną się o wiele łatwiejsze do wykonania. Każda receptura zawiera kod, który można wstawić do swojego programu, połączyć lub zaadaptować według potrzeb. Przedstawiono także analizy wyjaśniające poszczególne rozwiązania i ich kontekst. Z tą książką płynnie przejdziesz od rozważań teoretycznych do opracowywania działających aplikacji i praktycznego korzystania z zalet uczenia maszynowego.

Receptury w tej książce dotyczą:

  • wektorów, macierzy i tablic
  • obsługi danych liczbowych i tekstowych, obrazów, a także związanych z datą i godziną
  • redukcji wymiarowości za pomocą wyodrębniania i wyboru cech
  • oceny i wyboru modelu oraz regresji liniowej i logistycznej
  • maszyn wektorów nośnych (SVM), naiwnej klasyfikacji bayesowskiej, klasteryzacji i sieci neuronowych
  • zapisywania i wczytywania wytrenowanych modeli

Uczenie maszynowe w Pythonie - użyj sprawdzonych receptur kodu!

Więcej...
Wypożycz w bibliotece
Dostęp online
Dodaj link
Kup
Brak ofert.
Recenzje

Brak recenzji - napisz pierwszą.

Nikt jeszcze nie obserwuje nowych recenzji tego dzieła.
Okładki
Kliknij na okładkę żeby zobaczyć powiększenie lub dodać ją na regał.

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Rozwoju Regionalnego
Dotacje na innowacje - Inwestujemy w Waszą przyszłość
foo