Praktyczne uczenie maszynowe

Autor:
Marcin Szeliga
Wydawcy:
Wydawnictwo Naukowe PWN (2018-2020)
IBUK Libra (2018)
ISBN:
978-83-01-20762-5, 978-83-01-20784-7
Autotagi:
druk
książki

Ostatnia dekada to czas bezprecedensowego rozwoju sztucznej inteligencji – nie tylko przełomowych badań nad algorytmami uczenia maszynowego, ale również coraz powszechniejszego stosowania inteligentnych maszyn w najróżniejszych dziedzinach naszego życia. Rozwój ten ogranicza niewystarczająca liczba specjalistów, łączących znajomość modelowania danych (przygotowania danych i zasad działania algorytmów uczenia maszynowego) ze znajomością języków analizy danych, takich jak SQL, R czy Python. Inżynieria danych (ang. data science) to interdyscyplinarna wiedza, której opanowanie wymaga znajomości algebry, geometrii, statystyki, rachunku prawdopodobieństwa i algorytmiki, uzupełnionej o praktyczną umiejętność programowania. Co więcej, sztuczna inteligencja jest przedmiotem intensywnych badań naukowych i samo śledzenie postępów w tej dziedzinie wiąże się z regularnym (codziennym) dokształcaniem. Niniejsza książka łączy w sobie teorię z praktyką. Opisuje rozwiązania kilkunastu typowych problemów, takich jak prognozowanie zysków, optymalizacja kampanii marketingowej, proaktywna konserwacja sprzętu czy oceny ryzyka kredytowego. Ich układ jest celowy – każdy przykład jest okazją do wyjaśnienia określonych zagadnień, zaczynając od narzędzi, przez podstawy uczenia maszynowego, sposoby oceny jakości danych i ich przygotowania do dalszej analizy, zasady tworzenia modeli uczenia maszynowego i ich optymalizacji, po wskazówki dotyczące wdrożenia gotowych modeli do produkcji. Książka jest adresowana do wszystkich, którzy chcieliby poznać lub udoskonalić: praktyczną znajomość statystki i umiejętność wizualizacji danych niezbędnej do oceny jakości danych; praktyczną znajomość języka SQL, R lub Python niezbędnej do uporządkowania, wstępnego przygotowania i wzbogacenia danych; zasady działania poszczególnych algorytmów uczenia maszynowego koniecznych do ich wyboru i optymalizacji; korzystanie z języka R lub Python do stworzenia, oceny, zoptymalizowania i wdrożenia do produkcji modeli eksploracji danych. Zarówno studenci kierunków informatycznych, jak również analitycy, programiści, administratorzy baz danych oraz statystycy znajdą w książce informacje, które pozwolą im opanować praktyczne umiejętności potrzebne do samodzielnego tworzenia systemów uczenia maszynowego.
Więcej...
Wypożycz w bibliotece
Dostęp online
Dodaj link
Kup
Brak ofert.
Recenzje

Brak recenzji - napisz pierwszą.

Dyskusje

Brak wątków

Przejdź do forum
Nikt jeszcze nie obserwuje nowych recenzji tego dzieła.
Okładki
Kliknij na okładkę żeby zobaczyć powiększenie lub dodać ją na regał.

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Rozwoju Regionalnego
Dotacje na innowacje - Inwestujemy w Waszą przyszłość
foo