Niepewność pomiarów w laboratorium balistyki

Autor:
Zbigniew Wrzesiński
Wydawcy:
Oficyna Wydawnicza Politechniki Warszawskiej (2023)
ebookpoint BIBLIO (2023)
IBUK Libra (2023)
ISBN:
978-83-8156-497-7, 978-83-8156-498-4
978-83-8156-498-4
Autotagi:
dokumenty elektroniczne
druk
e-booki

W badaniach laboratoryjnych balistyki, narzędziem umożliwiającym obiektywne i prawdopodobne oszacowanie parametrów rozkładu wybranych cech elementów populacji, jest teoria niepewności pomiaru wykorzystująca elementarne prawa rachunku prawdopodobieństwa i statystyki matematycznej. Dlatego też w części początkowej pracy omówiono niezbędne wybrane wiadomości z rachunku prawdopodobieństwa i statystyki matematycznej, takie jak: zmienne losowe jednowymiarowe, zmienne losowe wielowymiarowe oraz parametry rozkładu badanej cechy elementów populacji, wartość oczekiwaną, estymację punktową i przedziałową oraz współczynnik korelacji liniowej Pearsona. Istotną częścią pracy jest omówienie rozkładów statystycznych. Rozkładem statystycznym który omówiono szczegółowo jest rozkład jednopunktowy. Postąpiono tak z tego względu, że rozkład ten jest podstawą do zdefiniowania rozkładów wielopunktowych będących w istocie złożeniem wielokrotnym rozkładu jednopunktowego. Rozkład jednopunktowy przedstawiono jako degenerację rozkładu ciągłego jednostajnego do punktu. Dalej dokonano złożenia rozkładu jednopunktowego w rozkład n-punktowy zwany inaczej rozkładem dwumianowym Bernoulliego. Przytoczono również twierdzenie Moivere’a-Laplace’a odnoszące się do rozkładu dwumianowego Bernoulliego które wskazuje, że w przejściu granicznym dla tego rozkładu zbiega się on do rozkładu normalnego Gaussa, który to rozkład znajduje zastosowanie w prawie wszystkich procesach zachodzących w przyrodzie i w wielu innych dziedzinach życia. Omówiono również rozkład chi-kwadrat i rozkład t-Studenta stosowany przy ocenie niepewności pomiaru dla oszacowania przedziału ufności i poziomu ufności znalezienia w nich parametru rozkładu średniej arytmetycznej zmiennej losowej populacji, jeżeli próba losowa nie przekracza trzydziestu pomiarów (n < 30). Omówiono również regresję liniową, która sprowadza zagadnienie współzależności zmiennych losowych do zależności funkcyjnej. Natomiast regresję nieliniową opisano jako ogólną procedurę służącą do dopasowania dowolnego rodzaju zależności między zmiennymi Y objaśnianą oraz X objaśniającą. Podano przykłady kilku funkcji nieliniowych, które po transformacji zmiennych losowych doprowadzono do modelu regresji liniowej. W pracy uwzględniono dokument Głównego Urzędu Miar zatytułowany „Wyrażanie niepewności pomiaru: Przewodnik”, wydany w 1999 roku. Na podstawie tego dokumentu określono niepewności standardowe typu A oraz typu B, niepewności wzorcowania dla podstawowych przyrządów stosowanych w laboratoriach, obliczanie niepewności standardowej dla wielkości złożonych, niepewność rozszerzoną oraz weryfikację hipotezy liniowości.
Więcej...
Wypożycz w bibliotece
Dostęp online
Dodaj link
Kup
Brak ofert.
Recenzje

Brak recenzji - napisz pierwszą.

Nikt jeszcze nie obserwuje nowych recenzji tego dzieła.
Okładki
Kliknij na okładkę żeby zobaczyć powiększenie lub dodać ją na regał.

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Rozwoju Regionalnego
Dotacje na innowacje - Inwestujemy w Waszą przyszłość
foo